File Organization Patterns Database
Comprehensive Reference for Automated Directory Management
Pattern Overview
This database contains proven file organization patterns, classification rules, and best practices for automated directory management across different project types and organizational contexts.
Project Type Classification Patterns
1. Python Machine Learning Projects
python_ml_patterns:
identification_indicators:
file_extensions: [".py", ".ipynb", ".pkl", ".h5", ".csv", ".json"]
import_patterns:
- "import pandas"
- "import numpy"
- "import sklearn"
- "import tensorflow"
- "import torch"
- "import matplotlib"
directory_hints: ["data", "models", "notebooks", "experiments"]
classification_rules:
data_files:
patterns: ["*.csv", "*.json", "*.parquet", "*.h5", "*.pkl", "*.npy"]
content_indicators: ["dataset", "training", "test", "validation", "features", "labels"]
size_thresholds:
raw_data: "> 1MB -> src/data/raw/"
processed_data: "> 10MB -> src/data/processed/"
model_artifacts: "> 50MB -> src/models/"
destination_logic: "size_and_content_based"
notebook_files:
patterns: ["*.ipynb"]
content_analysis:
exploratory: "contains 'explore', 'EDA', 'analysis' -> src/notebooks/exploratory/"
modeling: "contains 'model', 'train', 'fit' -> src/notebooks/modeling/"
visualization: "contains 'plot', 'chart', 'graph' -> src/notebooks/visualization/"
preprocessing: "contains 'clean', 'preprocess', 'transform' -> src/notebooks/preprocessing/"
cell_count_threshold: "> 5 cells indicates active notebook"
script_files:
patterns: ["*.py"]
ast_analysis:
main_scripts: "contains 'if __name__ == \"__main__\"' -> src/scripts/"
utility_functions: "only function definitions -> src/utils/"
model_classes: "contains 'class.*Model' -> src/models/"
test_files: "contains 'def test_' or 'import unittest' -> src/tests/"
configuration: "contains config/settings variables -> config/"
import_analysis:
data_processing: "imports pandas/numpy heavily -> src/data/"
model_training: "imports sklearn/tensorflow -> src/models/"
visualization: "imports matplotlib/seaborn -> src/visualization/"2. Web Application Projects
3. Research and Documentation Projects
Content-Based Classification Patterns
Natural Language Processing Indicators
Code Analysis Patterns
File Naming Convention Patterns
Standard Naming Patterns
Size-Based Classification Patterns
File Size Thresholds
Temporal Classification Patterns
Time-Based Organization
Integration Patterns
Squad Coordination Patterns
Success Metrics and Validation
Pattern Effectiveness Metrics
This comprehensive pattern database serves as the knowledge foundation for intelligent file organization, enabling the squad to make informed decisions about file placement, structure optimization, and maintenance strategies.
PreviousEnhanced Execution Optimization Database with IntelligenceNextEnhanced Integration Patterns with Validation Intelligence
Last updated