JAEGIS Participation Tracking System Implementation
System Overview
The Participation Tracking System provides comprehensive, real-time monitoring of agent contributions throughout workflow execution. It validates meaningful participation, tracks quality metrics, and provides detailed progress reporting for full team collaboration.
Core Architecture
1. Session-Based Tracking Framework
Participation Session Structure
class ParticipationSession:
"""Comprehensive participation tracking session"""
def __init__(self, session_id, workflow_type, participating_agents):
self.session_id = session_id
self.workflow_type = workflow_type
self.started_at = time.time()
self.participating_agents = participating_agents
self.agent_records = {}
self.contribution_timeline = []
self.quality_metrics = QualityMetrics()
self.phase_tracking = PhaseTracking()
self.real_time_monitor = RealTimeMonitor()
# Initialize agent tracking records
for agent in participating_agents:
self.agent_records[agent.name] = AgentTrackingRecord(
agent_name=agent.name,
agent_title=agent.title,
agent_classification=agent.classification,
expected_contributions=self.load_expected_contributions(agent),
participation_status="PENDING",
contribution_log=[],
quality_history=[],
integration_points=self.load_integration_points(agent),
meaningful_contribution_count=0
)
def track_contribution(self, agent_name, contribution_data):
"""Track and validate agent contribution"""
agent_record = self.agent_records[agent_name]
# Validate contribution meaningfulness
meaningfulness_validation = self.validate_contribution_meaningfulness(
contribution_data,
agent_record.expected_contributions
)
# Create contribution entry
contribution_entry = ContributionEntry(
timestamp=time.time(),
agent_name=agent_name,
contribution_type=contribution_data.contribution_type,
content=contribution_data.content,
workflow_phase=self.phase_tracking.current_phase,
integration_point=contribution_data.integration_point,
quality_score=meaningfulness_validation.quality_score,
is_meaningful=meaningfulness_validation.is_meaningful,
validation_details=meaningfulness_validation.details
)
# Update agent record
agent_record.add_contribution(contribution_entry)
# Update participation status
new_status = self.calculate_participation_status(agent_record)
agent_record.update_status(new_status)
# Update session metrics
self.update_session_metrics(contribution_entry)
# Add to timeline
self.contribution_timeline.append(contribution_entry)
return ContributionTrackingResult(
contribution_entry=contribution_entry,
agent_status=new_status,
session_progress=self.calculate_session_progress()
)2. Meaningful Contribution Validation
Contribution Analysis Engine
3. Real-Time Progress Monitoring
Live Progress Tracking
4. Participation Status Management
Dynamic Status Tracking
5. Quality Metrics and Analytics
Comprehensive Quality Tracking
6. Progress Reporting and Visualization
Comprehensive Progress Reports
7. Success Metrics and Validation
Tracking System Success Criteria
Tracking Accuracy: 100% accurate contribution detection and classification
Real-Time Performance: Status updates within 2 seconds of contribution
Quality Assessment: 95% accuracy in meaningful contribution detection
System Reliability: 99.9% uptime for tracking system
Data Integrity: Complete audit trail of all participation activities
User Experience: Clear, informative progress displays and reports
Validation Framework
Contribution Validation: Automated validation of all contribution criteria
Quality Benchmarking: Comparison against established quality standards
Performance Testing: Load testing with multiple concurrent sessions
Accuracy Testing: Validation of tracking accuracy across different scenarios
User Acceptance Testing: Validation of progress displays and reporting
Implementation Status
β Session Framework: Comprehensive session-based tracking structure β Contribution Validation: Meaningful contribution validation engine β Real-Time Monitoring: Live progress tracking and status updates β Quality Metrics: Comprehensive quality tracking and analytics β Progress Reporting: Detailed progress reports and visualizations
Next Steps: Implement command system, integrate with workflows, create user interfaces, and validate complete tracking system functionality.
Last updated