JAEGIS Participation Tracking System Implementation

System Overview

The Participation Tracking System provides comprehensive, real-time monitoring of agent contributions throughout workflow execution. It validates meaningful participation, tracks quality metrics, and provides detailed progress reporting for full team collaboration.

Core Architecture

1. Session-Based Tracking Framework

Participation Session Structure

class ParticipationSession:
    """Comprehensive participation tracking session"""
    
    def __init__(self, session_id, workflow_type, participating_agents):
        self.session_id = session_id
        self.workflow_type = workflow_type
        self.started_at = time.time()
        self.participating_agents = participating_agents
        self.agent_records = {}
        self.contribution_timeline = []
        self.quality_metrics = QualityMetrics()
        self.phase_tracking = PhaseTracking()
        self.real_time_monitor = RealTimeMonitor()
        
        # Initialize agent tracking records
        for agent in participating_agents:
            self.agent_records[agent.name] = AgentTrackingRecord(
                agent_name=agent.name,
                agent_title=agent.title,
                agent_classification=agent.classification,
                expected_contributions=self.load_expected_contributions(agent),
                participation_status="PENDING",
                contribution_log=[],
                quality_history=[],
                integration_points=self.load_integration_points(agent),
                meaningful_contribution_count=0
            )
    
    def track_contribution(self, agent_name, contribution_data):
        """Track and validate agent contribution"""
        
        agent_record = self.agent_records[agent_name]
        
        # Validate contribution meaningfulness
        meaningfulness_validation = self.validate_contribution_meaningfulness(
            contribution_data,
            agent_record.expected_contributions
        )
        
        # Create contribution entry
        contribution_entry = ContributionEntry(
            timestamp=time.time(),
            agent_name=agent_name,
            contribution_type=contribution_data.contribution_type,
            content=contribution_data.content,
            workflow_phase=self.phase_tracking.current_phase,
            integration_point=contribution_data.integration_point,
            quality_score=meaningfulness_validation.quality_score,
            is_meaningful=meaningfulness_validation.is_meaningful,
            validation_details=meaningfulness_validation.details
        )
        
        # Update agent record
        agent_record.add_contribution(contribution_entry)
        
        # Update participation status
        new_status = self.calculate_participation_status(agent_record)
        agent_record.update_status(new_status)
        
        # Update session metrics
        self.update_session_metrics(contribution_entry)
        
        # Add to timeline
        self.contribution_timeline.append(contribution_entry)
        
        return ContributionTrackingResult(
            contribution_entry=contribution_entry,
            agent_status=new_status,
            session_progress=self.calculate_session_progress()
        )

2. Meaningful Contribution Validation

Contribution Analysis Engine

3. Real-Time Progress Monitoring

Live Progress Tracking

4. Participation Status Management

Dynamic Status Tracking

5. Quality Metrics and Analytics

Comprehensive Quality Tracking

6. Progress Reporting and Visualization

Comprehensive Progress Reports

7. Success Metrics and Validation

Tracking System Success Criteria

  • Tracking Accuracy: 100% accurate contribution detection and classification

  • Real-Time Performance: Status updates within 2 seconds of contribution

  • Quality Assessment: 95% accuracy in meaningful contribution detection

  • System Reliability: 99.9% uptime for tracking system

  • Data Integrity: Complete audit trail of all participation activities

  • User Experience: Clear, informative progress displays and reports

Validation Framework

  • Contribution Validation: Automated validation of all contribution criteria

  • Quality Benchmarking: Comparison against established quality standards

  • Performance Testing: Load testing with multiple concurrent sessions

  • Accuracy Testing: Validation of tracking accuracy across different scenarios

  • User Acceptance Testing: Validation of progress displays and reporting

Implementation Status

βœ… Session Framework: Comprehensive session-based tracking structure βœ… Contribution Validation: Meaningful contribution validation engine βœ… Real-Time Monitoring: Live progress tracking and status updates βœ… Quality Metrics: Comprehensive quality tracking and analytics βœ… Progress Reporting: Detailed progress reports and visualizations

Next Steps: Implement command system, integrate with workflows, create user interfaces, and validate complete tracking system functionality.

Last updated